top of page

V. Publication List:

A. Journals Papers as First or Corresponding authors in Last Five Years

  1. Asim Senapati, Apu Das et al. “Sub-2 nm equivalent-oxide thickness ferroelectric transistors for cryogenic memory and computing”., Submitted in ACS Nano (Major revision requested) Available: TechRxiv. November 14, 2025. DOI: 10.36227/techrxiv.176315919.92028806/v1 (IF= 16.1, Q1)

  2. Apu Das, Agniva Paul, Asim Senapati, Zhao-Feng Lou, Gautham Kumar, et al.. “Direct Evidence of Interface-Driven Endurance Degradation in Hafnium-Oxide FeFETs: Stable Polarization Response of the Gate Stack in Degraded FeFETs.” Submitted in Advanced Functional Materials (Major revision requested) Available: 2025. ⟨hal-05332345⟩ (IF= 19, Q1)

  3. Asim Senapati, et al. Long-term reliability of naturally aged hafnium oxide ferroelectric transistors for energy-efficient embedded memory. Cell Reports Physical Science, Accepted, 2025 (IF= 8.2, Q1)

  4. M. Rana Sk et al., "Trapping Dynamics and Endurance in HfO2-FeFETs: An Insight From Charge Pumping," in IEEE Electron Device Letters, vol. 46, no. 11, pp. 2014-2017, Nov. 2025, doi: 10.1109/LED.2025.3612323. (IF= 4.5, Q1)

  5. Kumar, G., Paul, A., Das, A., Larrieu, G. and De, S. (2025), Insights into Oxygen Vacancy Effects on Ferroelectric Behavior of Hafnium Oxide: A Review. Phys. Status Solidi A, 222: 2500376. 10.1002/pssa.202500376  (IF= 1.9, Q2)

  6. Agniva Paul, Gautham Kumar, Apu Das, Guilhem Larrieu, Sourav De; Hafnium oxide-based ferroelectric field effect transistors: From materials and reliability to applications in storage-class memory and in-memory computing. J. Appl. Phys. 7 July 2025; 138 (1): 010701. 10.1063/5.0278057 (IF= 2.7, Q2)

  7. Y. Raffel et al., "Defect Dynamics in Silicon-Doped HfO2-Based Front-End-of-Line FeFETs: Insights From Low-Frequency Noise on Doping Concentration, Interfaces, and Write Cycling," in IEEE Transactions on Electron Devices, vol. 72, no. 6, pp. 3307-3313, June 2025, doi: 10.1109/TED.2025.3564270.(IF= 3.2, Q1~Q2)

  8. M. Rana Sk et al., "Spike-Timing Dependent Learning Dynamics in Silicon-Doped Hafnium-Oxide-Based Ferroelectric Field Effect Transistors," in IEEE Journal of the Electron Devices Society, vol. 13, pp. 762-768, 2025, doi: 10.1109/JEDS.2025.3556675. (IF= 2.5, Q2)

  9. C. -Y. Cho, C. -Y. Chiu, S. De and T. -H. Hou, "Exploring BEOL-Compatible Ferroelectricity in Ultra-Thin Hafnium–Zirconium Oxide: Thermal Budget, FTJ Characteristics, and Device Reliability," in IEEE Journal of the Electron Devices Society, vol. 13, pp. 808-813, 2025, doi: 10.1109/JEDS.2024.3471819. (IF= 2.5, Q2)

  10. Sunil, A., Rana SK, M., Lederer, M., Raffel, Y., Müller, F., Olivo, R., Hoffmann, R., Seidel, K., Kämpfe, T., Chakrabarti, B. and De, S. (2024), Ferroelectric Field Effect Transistors–Based Content-Addressable Storage-Class Memory: A Study on the Impact of Device Variation and High-Temperature Compatibility. Adv. Intell. Syst., 6: 2300461. doi: 10.1002/aisy.202300461  (IF= 2.5, Q2)

  11. M. R. Sk et al., "1F-1T Array: Current Limiting Transistor Cascoded FeFET Memory Array for Variation Tolerant Vector-Matrix Multiplication Operation," in IEEE Transactions on Nanotechnology, vol. 22, pp. 424-429, 2023, doi: 10.1109/TNANO.2023.3295093. (IF= 6.1, Q1)

  12. Sk, M. R., Pande, S., Müller, F., Raffel, Y., Lederer, M., Pirro, L., Beyer, S., Seidel, K., Kämpfe, T., De, S., & Chakrabarti, B. (2023). Fixed charges at the HfO2/SiO2 interface: Impact on the memory window of FeFET. Memories- Elsevier,doi: 10.1016/j.memori.2023.100050 (IS= 3.62, Q2)

  13. Parmar, V., et al. "Demonstration of differential mode fefet-array based imc-macro for realizing multi-precision mixed-signal ai accelerator." Advanced Intelligent System (2023) doi: 10.1002/aisy.202200389  (IF= 6.1, Q1)

  14. Rana Sk, M., et.al., (2022). “Ferroelectric Content Addressable Memory Cells with IGZO Channel: Impact of Retention Degradation on the Multibit Operation”. ACS Applied Electronic Material. doi: 10.1021/acsaelm.2c01357 (IF= 4.7, Q1)

  15. S. De et al., "28 nm HKMG-Based Current Limited FeFET Crossbar-Array for Inference Application," in IEEE TED, vol. 69, no. 12, pp. 7194-7198, Dec. 2022, doi: 10.1109/TED.2022.3216973.

  16. S. De et al., "Demonstration of Multiply-Accumulate Operation With 28 nm FeFET Crossbar Array," in IEEE EDL, vol. 43, no. 12, pp. 2081-2084, Dec. 2022, doi: 10.1109/LED.2022.3216558. (IF= 3.2, Q1~Q2)

  17. Raffel, Y., De, S., Lederer, M., Olivo, R. R., Hoffmann, R., Thunder, S., Pirro, L., Beyer, S., Chohan, T., Kämpfe, T., Seidel, K., & Heitmann, J. (2022). Synergistic Approach of Interfacial Layer Engineering and READ-Voltage Optimization in HfO2-Based FeFETs for In-Memory-Computing Applications. ACS Applied Electronic Materials, 4(11). doi:10.1021/acsaelm.2c00771 (IF= 4.7, Q1)

  18. S. De et al., "READ-Optimized 28nm HKMG Multibit FeFET Synapses for Inference-Engine Applications," in IEEE JEDS, vol. 10, pp. 637-641, 2022, doi: 10.1109/JEDS.2022.3195119. (IF= 2.5, Q2)

  19. De S, Baig MA, Qiu B-H, Müller F, Le H-H, Lederer M, Kämpfe T, Ali T, Sung P-J, Su C-J, Lee Y-J and Lu DD (2022) Random and Systematic Variation in Nanoscale Hf0.5Zr0.5O2 Ferroelectric FinFETs: Physical Origin and Neuromorphic Circuit Implications. Front. Nanotechnol. doi:10.3389/fnano.2021.826232. (IF=3.8, Q2)

  20. S. De et al., "Robust Binary Neural Network Operation From 233 K to 398 K via Gate Stack and Bias Optimization of Ferroelectric FinFET Synapses," in IEEE Electron Device Letters, vol. 42, no. 8, pp. 1144-1147, Aug. 2021, doi: 10.1109/LED.2021.3089621. (IF= 4.5, Q1)

  21. De, S., et.al., (2021). Uniform Crystal Formation and Electrical Variability Reduction in Hafnium-Oxide-Based Ferroelectric Memory by Thermal Engineering. ACS Applied Electronic Materials, 3(2), 619–628. doi:10.1021/acsaelm.0c00610 (IF= 4.7, Q1)

  22. Lu, D. D., De, S., Baig, M. A., Qiu, B.-H., & Lee, Y.-J. (2020). Computationally efficient compact model for ferroelectric field-effect transistors to simulate the online training of neural networks. Semiconductor Science and Technology, 35(9), 95007. 10.1088/1361-6641/ab9bed (IF= 2.1, Q2)

B. Ten Latest Conference Papers as First or Corresponding authors in Last Five Years:

  1. A. Das, et. al., “Fundamental Understanding of Endurance Degradation in Hafnium-Oxide FeFETs”, 2026 10th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)

  2. A. Das, et. al., “Fundamental Insights into Trap Accumulation and Endurance Degradation in HfO2 FeFETs via Low Frequency Noise and Charge Pumping Analysis”- IEEE SISC 2025, San Diego USA.

  3. Apu Das et. al., “Reliability of Sub-2 nm EOT FeFETs at Cryogenic Temperatures”- IEEE ICEE 2025, Bangalore, India.

  4. S. Gambali, et. al.,, “Adaptive FeFET-Based LIF Neuron for Regression Tasks on Spiking Neural Networks” IEEE ICEE 2025, Bangalore, India.

  5. Jaskirat S. Maskeen, et. al., “HZO based FeFET with Sub 2-nm Gate Stack as Synapse for Spiking Neural Network” IEEE ICEE 2025, Bangalore, India.

  6. S. Pande et al., "FeFET based LIF Neuron with Learnable Threshold and Time Constant," 2024 Device Research Conference (DRC), College Park, MD, USA, 2024, pp. 1-2, doi: 10.1109/DRC61706.2024.10605571.

  7. D. Hessler, et. al.,, "Lattice Scattering Related Flicker Noise in Silicon-Doped Hafnium Oxide FeFETs," 2024 VLSI TSA, HsinChu, Taiwan, 2024, pp. 1-2, doi: 10.1109/VLSITSA60681.2024.10546437. Best Paper Award

  8. S. Masud Rana et al., "Spike-Time Dependent Plasticity in HfOâ‚‚-Based Ferroelectric FET Synapses," 2024 8th IEEE EDTM, Bangalore, India, 2024, pp. 1-3, doi: 10.1109/EDTM58488.2024.10512154.

  9. D. Hessler, et. al., "Dopant-Dependent Flicker Noise of Hafnium Oxide Ferroelectric Field Effect Transistor," 2024 8th IEEE EDTM, Bangalore, India, 2024, pp. 1-3, doi: 10.1109/EDTM58488.2024.10512251.

  10. C. -Y. Chiu, et. al., "Trade-off Between Thermal Budget and Thickness Scaling: A Bottleneck on Quest for BEOL Compatible Ultra-Thin Ferroelectric Films Sub-5nm," 2024 8th IEEE EDTM, Bangalore, India, 2024, pp. 1-3, doi: 10.1109/EDTM58488.2024.10511710.

bottom of page